Lectures on Challenging Mathematics

Math Challenges 7

Geometry

Summer 2018

Zuming Feng
Phillips Exeter Academy and IDEA Math
zfeng@exeter.edu

Copyright © 2008 – 2018 IDEA MATH.
Contents

Geometry

1.1 Computational geometry (part 1) .. 3
1.2 Revisiting orthocenter ... 4
1.3 The first look of the radical axis .. 5
1.4 (Regular) polygons .. 6
1.5 Some *mean* concepts ... 7
1.6 Completing the picture .. 8
1.7 Revisiting arcs and angles ... 9
1.8 Area .. 10
1.9 Solid geometry (part 1) ... 11
1.10 Computational geometry (part 2) .. 12
1.11 Lattice points and analytic geometry ... 13
1.12 Computations with the laws of sines and the cosines 14
1.13 Solid geometry (part 2) ... 15
1.14 Geometry computations and Heron’s formula 16
1.15 Computational geometry (part 3) .. 17
1.7 Revisiting arcs and angles

1. Let P_1, P_2, \ldots, P_n are evenly distributed around a circle. Determine the minimum value of n, given that there are three points P_i, P_j, P_k such that in triangle $P_iP_jP_k$

(a) $\angle P_i = \frac{180^\circ}{7}$, $\angle P_j = \frac{360^\circ}{7}$, $\angle P_k = \frac{720^\circ}{7}$

(b) $\angle P_i = 40^\circ$, $\angle P_j = 60^\circ$, $\angle P_k = 80^\circ$

2. In triangle ABC, we have $AB = 7$, $AC = 8$, and $BC = 9$. Point D lies on the circumcircle of triangle ABC so that ray AD bisects $\angle BAC$. What is the value of AD/CD?

3. Let M and A be two given points on circle ω with minor arc $\overline{MA} = 80^\circ$. Let T and H be two moving points on the major \overline{MA} with minor arc $\overline{TH} = 100^\circ$. Diagonals of the quadrilateral $MATH$ meet at P. As T and H moving along the arc, what is the locus of P?

4. Distinct points A and B are on a semicircle with diameter MN and center C. Point P lies on segment CN and $\angle CAP = \angle CBP = \alpha$ and $\angle ACM = \beta$. Suppose that A lies on \overline{MB}, express $\angle BPN$ in terms of α and β.

5. (Continuation) Distinct points A and B are on a semicircle with diameter MN and center C. Point P lies on segment CN and $\angle CAP = \angle CBP = \alpha$ and $\angle ACM = \beta$. Suppose that B lies on \overline{MA}, express $\angle BPN$ in terms of α and β.