Lectures on Challenging Mathematics

Integrated Math 7A
Analytic Geometry
and Vector Operations

Summer 2019

Zuming Feng
Phillips Exeter Academy and IDEA Math
zfeng@exeter.edu
Contents

1. Linear parametric equation and vector operations ... 3
 1.1 Linear parametric equations (part 1) ... 3
 1.2 Vector motion (part 1) .. 5
 1.3 Lattice points (part 1) .. 7
 1.4 Linear parametric equations (part 2) ... 8
 1.5 Vector motion (part 2) .. 9
 1.6 Lattice points (part 2) .. 10
 1.7 Linear parametric equations (part 3) ... 11
 1.8 Vector motion (part 3) .. 12
 1.9 Linear parametric equations (part 4) ... 13
 1.10 3-D rectangular coordinates ... 14
 1.11 Vector motion (part 4) .. 15
 1.12 Linear parametric equations (part 5) ... 16
 1.13 Vector motion (part 5) .. 17
 1.14 Analytic transformations (part 1) ... 18
 1.15 Lattice points (part 3) .. 19
 1.16 Vector motion (part 6) .. 20
 1.17 Analytic transformations (part 2) ... 21
 1.18 Lattice points (part 4) .. 22
 1.19 3-D rectangular coordinates and linear equations (part 1) 23
 1.20 Analytic transformations (part 3) ... 24
 1.21 Linear parametric equations (part 6) ... 25
 1.22 3-D rectangular coordinates and linear equations (part 2) 26
 1.23 Analytic transformations (part 4) ... 27
 1.24 Vector motion (part 7) .. 28
 1.25 Linear parametric equations (part 7) ... 29
 1.26 Vector motion (part 8) .. 30
 1.27 Linear parametric equations (part 8) ... 31
 1.28 Analytic transformations (part 5) ... 32
 1.29 Vector motion (part 9) .. 33
 1.30 Lattice points (part 5) .. 34
1.13 Vector motion (part 5)

1. A direction vector for a line is any vector that joins two points on that line. A normal vector of a line is any vector that is perpendicular to the line.

(a) Find a direction vector and a normal vector for $2x + 5y = 8$. It is not certain that you and your classmates will get exactly the same answer. How should your answers be related, however?

(b) Show that $[b, -a]$ is a direction vector for the line $ax + by = c$.

(c) Show that $[a, b]$ is a normal vector for the line $ax + by = c$.

2. (Continuation) In 2-D (coordinate) geometry, one might think that the concepts of direction vector and normal vector are equally important and maybe somewhat redundant. But in 3-D (coordinate) geometry, these two concepts could be vastly different. In particular, which of the following definitions are meaningful?

(a) A direction vector for a plane is any vector that joins two points on that plane.

(b) A normal vector of a line is any vector that is perpendicular to the line.

(c) A normal vector of a plane is any vector that is perpendicular to the plane.

Use your imagination to define a direction vector for a curve at a given point on the curve.

3. If M is the midpoint of segment AB, how are vectors \vec{AM}, \vec{AB}, \vec{MB}, and \vec{BM} related?

4. Let $A = (5, -3, 6)$, $B = (0, 0, 0)$, and $C = (3, 7, 1)$. Show that

(a) $\angle ABC$ is a right angle.

(b) the vectors $[5, -3, 6]$ and $[3, 7, 1]$ are perpendicular.

5. Two of the midpoints of a triangle are $(3, -1)$ and $(4, 3)$. One of the vertices of the triangle is $(7, -3)$.

(a) Find the other vertices of one such triangles.

(b) How many such triangles are there? Find the vertices of each of these triangles.
1.17 Analytic transformations (part 2)

1. Apply the transformation \(T(x, y) = (2x + 3y, -x + y) \) to the unit square, whose vertices are \((0, 0), (1, 0), (0, 1), \) and \((1, 1)\). Even though \(T \) is not a reflection, it is customary to call the resulting figure the *image* of the square. What kind of figure is it? Is this transformation an isometry?

2. Decide whether each of the following transformation is an isometry, and give your reasons.

 (a) \(T_1(x, y) = (2x, \frac{1}{2}y) \)
 (b) \(T_2(x, y) = (-x, y + 2) \)

3. Given the transformation \(F(x, y) = (-0.6x - 0.8y, 0.8x - 0.6y) \), Shane calculated the image of the isosceles right triangle formed by \(S = (0, 0), H = (0, -5) \), and \(A = (5, 0) \), and declared that \(F \) is a reflection. Morgan instead calculated the image of the scalene triangle formed by \(M = (7, 4), O = (0, 0) \), and \(R = (7, 1) \), and concluded that \(F \) is a rotation. Who was correct? Explain your choice, and account for the disagreement.

4. Determine if \(F \) is an isometry.

5. Explain why an isometry always transforms a right triangle onto a right triangle. In particular, does isometry preserve angle measures? If so, why this information is not part of the definition?
1.30 Lattice points (part 5)

1. In triangle ABC, $A = (0, 0)$, $B = (4, 3)$, $C = (5, 12)$. Point D lies on side BC such that $\angle BAD = \angle CAD$. Find the coordinates of D.

2. Let $P = (-15, 0)$, $Q = (5, 0)$, $R = (8, 21)$, and $S = (0, 15)$. Draw quadrilateral $PQRS$ and measure its sides and angles. Is there anything remarkable about this figure? Make a conjecture from your observation and use vector operations or lattice points wise to confirm your conjecture.

3. Describe a transformation that carries the triangle with vertices $K = (0, 0)$, $L = (10, 5)$, and $M = (6, 18)$ onto the triangle with vertices $R = (3, 4)$, $P = (-2, 14)$, and $Q = (9, 22)$. Where does your transformation send $(5, 3)$?

4. Suppose that a quadrilateral is measured and found to have one of the following set of properties. Is this evidence enough to conclude that the quadrilateral is a parallelogram? Explain.

 (a) two pairs of equal nonadjacent sides
 (b) two pairs of equal nonadjacent angles
 (c) a pair of equal nonadjacent sides and a pair of equal nonadjacent angles

5. In a coordinate plane, determine if it is possible for an equilateral triangle to have all its vertices to be lattice points.