## Lectures on Challenging Mathematics

## Math Challenges 3

Geometry

Winter 2018

Zuming Feng Phillips Exeter Academy and IDEA Math zfeng@exeter.edu

## Contents

| th                           |                                              |    |
|------------------------------|----------------------------------------------|----|
| $\bigcap_{i=1}^{\infty}$ Geo | metry                                        | 3  |
| 1.1                          | Pythagorean theorem (part 1)                 | 3  |
| $\mathfrak{S}_{1.2}$         | Triangle congruence                          | 4  |
| $\bigcirc 1.3$               |                                              | 5  |
| 1.4                          | Pythagorean theorem (part 2)                 | 7  |
| 1.5                          | Special quadrilaterals (part 2)              | 8  |
|                              | 2-D and 3-D vision (part 1)                  | 9  |
| 1.7                          | 2-D and 3-D vision (part 1)                  | 10 |
| 1.8                          | 2-D and 3-D vision (part 2)                  | 1  |
| $\infty$ 1.9                 | Trapezoids                                   | 12 |
| $\approx$ 1.10               | Geometric computations (part 1)              | 13 |
| 2                            |                                              |    |
| 2⊢Geo                        | metry Supplement 1                           | .5 |
| $\frac{1}{2}$ .1             | Revisiting regular polygons                  |    |
| 2.2                          | Triangle inequality                          | 16 |
| 2.3                          | Geometric computations (part 2)              | 17 |
| 2.4                          | Practices in geometric computations (part 1) | 18 |
| $\widetilde{}2.5$            | Area and circles                             |    |
| $\odot$                      | THE FITTE                                    |    |
|                              |                                              |    |

## 1.4 Pythagorean theorem (part 2)

- 1. A  $5 \times 5$  square ABCD and a  $3 \times 3$  square CEFG are placed side to side. These two squares can be cut into pieces that will fit together to form a third square.
  - (a) Find the length of a side of the third square.
  - (b) Mark P on segment BC so that PB=3, then draw segments PA and PF. Identify all pairs of congruent triangles in the resulting figure.





- (Continuation) For two arbitrary squares, will the preceding method always produce pieces that form a new square? When you rearrange these pieces to form the third square, explain why these pieces fit with each other well so there is no crease or overlapping.
- 3. (Continuation) Explain why this method leads to a *proof* of the Pythagorean theorem.
- 4. Convex quadrilateral ABCD has perpendicular diagonals. If AB = 25, BC = 39 and CD = 60, what is the length of segment DA?
  - The square shown in the left-hand side diagram has been dissected into two trapezoids and two right triangles. These four pieces have been reassembled into the the rectangle shown in right-hand side diagram. Explain why there must be a crease in the rectangle? Why can't we see this crease? Describe this crease.



