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38 Integrated Mathematics 2 Algebra

3.7 Factorization of quadratic polynomials

1. The task of the section is to learn how to factor given quadratic polynomial; that is, express a
quadratic polynomial as a product of nonconstant linear polynomials with integer coe�cients.
Let’s start with confirming the expansion:

(x + p)(x + q) = x2 + (p + q)x + pq.

If quadratic polynomial x2 + bx + c can be factored into the product (x + p)(x + q), that is,
x2 + bx + c = (x + p)(x + q), then what are b and c, in terms of p and q?

2. In this problem, we deal with the factorization of quadratic polynomials in general form.
For example, we want to find polynomials (ax + b)(cx + d) = 6x2 + 17x + 12. We have, by
expanding, the following form:

ax + b
⇥) cx + d

bd
(ad)x
(bc)x

+) (ac)x2

6x2 + 17x + 12

Because ac = 6, the possible choices for {a, c} are {±1, ±6} and {±2, ±3}. Because bd = 12,
the possible choices for {b, d} are {±1, ±12}, {±2, ±6}, {±3, ±4}. By checking with the
condition ad + bc = 17, it is not di�cult to find that (a, b, c, d) = (2, 3, 3, 4).

Repeat the above the process to factor 2x2 � 3x � 20.

3. For each of the following polynomials, determine if it can be factored. If yes, factor it; if no,
state that they cannot be factored.

(a) 20x2 � 45 (b) x2 � 14x + 45
(c) x2 + 5x � 7 (d) 2x2 + 9x � 5
(e) 3x2 + 5x + 2 (f) 2x2 + 4x � 3

4. The product of two consecutive odd positive integers is equal to 4095. Set the numbers to be
2n � 1 and 2n + 1. Set up an equation for n and solve the equation to find the two numbers.

5. Factor 9 � ⇡2m2 and 2x + ⇡x � 2y � ⇡y.
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Solving quadratic equations (part 1) 51

4.8 Solving quadratic equations (part 1)

1. Graph the quadratic functions y = x2, y = (x � 2)2, and y = (x + 3)2. Describe in general
terms how the graph of y = x2 is transformed to produce the graph of y = (x � h)2.

-2

2

4

6

8

y

-6 -4 -2 2 4 6
x

2. (Continuation) You have seen that the graph of any quadratic function is a parabola that is
symmetrical with respect to a line called the axis of symmetry, and that each such parabola
also has a lowest or highest point called the vertex. For each of the graphs identify the
coordinates of the vertex and write an equation for axis of symmetry.

3. When asked to solve the equation (x � 3)2 = 2, Jess said, “That’s easy - just take the square
root of both sides.” What are the two possible values for x, in exact form? Plot the graph of
y = (x � 3)2 and explain the meaning of solving equation (x � 3)2 = 2.

4. (Continuation) However, when asked to solve the equation x2 � 8x = 1, Jess said, “Hmm
. . . not so easy, but I think that adding something to both sides of the equation is the thing
to do.” This is indeed a good idea, but what number should Jess add to both sides? Find
this number and solve the equation.

5. Use the method above to solve quadratic equations:

(a) x2 � 4x = 16 (b) x2 + 10x = 144
(c) x2 � 14x � 1 = 0 (d) x2 + 6x + 16 = 0
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62 Integrated Mathematics 2 Algebra

5.7 Sequences, series, growth, and decay (part 3)

1. Find all possible values of x such that (a1, a2, a3, . . . ) = (3, 7, 11, . . . , x, 55, . . . ) is an arithmetic
progression.

Note that we call 7 the arithmetic mean of 3 and 11 because 7 = (3 + 11)/2. Find the
arithmetic mean of each of the following pairs of terms:

(a) a11 and a13 (b) a2 and a100 (c) am and an

2. Three-term sequence (a1, a2, a3) = (8, 5, 2) satisfies the following conditions: It is arithmetic
and all its terms are di↵erent digits. How many 3-term sequences satisfy these two conditions?

3. The exponential function D defined by D(n) = 2500(1.36)n describes the number of mold
spores found growing on a piece of fruit n days after the mold was first discovered.

(a) How many spores were on the fruit when the mold was first discovered?

(b) How many spores were on the fruit two days before the mold was first discovered?

(c) What is the daily growth rate of this population?

4. (Continuation) Plot points (n, D(n)) for n = 0, 1, 2, 3, 4, 5 in the coordinate plane.

(a) Do these points lie on a straight line?

(b) Sketch a curve passing through these points.

(c) Use the graphing device to graph the curve y = 2500(1.36)x and compare this curve
with the curve your drew in part (b).

(d) There is a point on the curve with x-coordinate equal to 0.5. Plot this point. Estimate
the value of the y-coordinate of this point. What is the meaning of this value? Repeat
this process for x = 3.6.

5. (Continuation) There is a point on the curve with x-coordinate equal to �1. Plot this point.
Estimate the value of the y-coordinate of this point. What is the meaning of this value?
Repeat this process for x = �2 and x = �4.5.

The graph of y = 2500(1.36)x indicates that there is an output (y value) for every real number
input x. We say that the domain of the function y = 2500(1.36)x is all real numbers. What
is the range of this function; that is, what are all the possible values of the output y?


