Lectures on Challenging Mathematics

Math Challenges 1

 $\mathbf{Algebra}$

Winter 2018

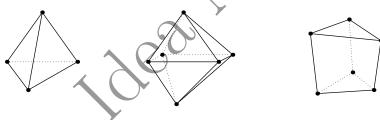
Edited by

Zuming Feng

Yunhua Xu Chengde Feng

Ivan Borsenco

Contents


th	
To Alge	ebra 3
1.1	Number line and real numbers
$\mathfrak{P}_{1.2}$	Mixed algebra problems (part 1)
$\bigcirc 1.3$	Challenges with exponents (part 1)
1.4	Algebraic expressions and operations (part 1)
1.5	Mixed algebra problems (part 2)
$\bigcirc 1.6$	Algebraic expressions and operations (part 2)
$\sim_{1.7}$	Challenges with exponents (part 2)
1.8	Revisiting units and percentage problems (part 1)
∞ 1.9	Revisiting linear equations
\approx 1.10	Revisiting units and percentage problems (part 2)
\mathbb{C}_{1}	
1	
<u>6</u>	\mathcal{O}_{λ}
Ξ.	1450
\mathcal{L}	
Copyright	
\bigcirc	
\odot	
	Taller Della

Algebraic expressions and operations (part 2) 1.6

- 1. The perimeter of a rectangle is 100 and its length is x. What expression represents the width of the rectangle? What expression represents the area of the rectangle?
- 2. Without using parentheses, write an expression equivalent to 3(4(3x-6)-2(2x+1)).
- 3. Given that m = 25q + 10d + 5n + c, find the value of m when q = 3, d = 5, n = 7, c = 11. Make up a word problem to go with the equation 25q + 10d + 5n + c = 100.
- . Determine the number of quadruples (q,d,n,c) of positive integers such that 25q+10d+5n+c=100.

$$25q + 10d + 5n + c = 100$$

For a 3-dimensional object, let v denote the number of its vertices, e denote the number of its edges, and f denote the number of its faces. For each of the following object, compute the value v - e + f. (For example, for a cube, we have $v \neq 8$, e = 12, f = 6, and v - e + f = 2.)

- (a) A tetrahedron. (Shown in the left-hand side figure above.)
- (b) An octahedron. (Shown in the middle figure above.)
- (c) A triangular prism. (Shown in the right-hand side figure above.)
- (d) The solid obtained in the following way: Gluing 27 unit cubes together to form a $3\times3\times3$ cube, and removing 8 unit cubes one from each corner.

c)Copyright 2008 - 2018 Idea