Contents

1 Number Theory
 1.1 Warm-up .. 3
 1.2 Complete set of residue classes 4
 1.3 Modular inverse .. 6
 1.4 Wilson’s theorem .. 7
 1.5 Modular arithmetic (part 1) 8
 1.6 Complications in solving linear congruence 9
 1.7 Modular arithmetic (part 2) 10
 1.8 Modular arithmetic (part 3) 11
 1.9 Modular arithmetic (part 4) 12
 1.10 Lagrange’s Interpolation Formula and Chinese Remainder Theorem .. 13
 1.11 Modular arithmetic (part 5) 14
 1.12 Fermat’s Little Theorem 15
 1.13 Proofs in modular arithmetic (part 1) 16
 1.14 Euler’s theorem .. 17
 1.15 Proofs in modular arithmetic (part 2) 18
 1.16 Modular arithmetic (part 6) 19
 1.17 Proofs in modular arithmetic (part 3) 20
 1.18 Quadratic residues ... 21
 1.19 Proofs in modular arithmetic (part 4) 22
 1.20 Diophantine equations 23

2 Practice Tests
 2.1 MO2M2 practice test 1 25
 2.2 MO2M2 practice test 2 26
 2.3 MO2M2 practice test 3 27
 2.4 MO2M2 practice test 4 28
 2.5 MO2M2 practice test 5 29
1. Let p be an odd prime, and let a and b be two relatively prime positive integers. Find the set of all possible values of

$$\gcd(a + b, \frac{a^p + b^p}{a + b}).$$

2. Let $S(x)$ be the sum of the digits of the its decimal representation.

 (a) Prove that for every positive integer x, \(\frac{S(x)}{S(2x)} \leq 5 \). Can this bound be improved?

 (b) Prove that \(\frac{S(x)}{S(3x)} \) is not bounded.

3. Call a number **very composite** if it has at least 2008 distinct prime factors. Do there exist 2008 consecutive very composite numbers?

4. Tanya chooses a positive integer $x \leq 100$, and Sasha is trying to guess this number. She can select two positive integers m and n less than 100 and ask for the value of $\gcd(x + m, n)$. Show that Sasha can determine Tanya’s number with at most seven questions (the numbers m and n can change each question).

5. Find all primes p such that $(p - 1)! + 1$ is a perfect power of p.
