Lectures on Challenging Mathematics

Elements of Math Olympiads

Number Theory

Summer 2018

Zuming Feng
Phillips Exeter Academy and IDEA Math
zfeng@exeter.edu
Contents

1. Number Theory
 1.1 Modular arithmetic (part 1) ... 3
 1.2 Perfect numbers, Mersenne primes, and the sum of divisors 5
 1.3 Number theory practice set 1 ... 6
 1.4 Modular arithmetic (part 2) ... 7
 1.5 The first look at the Frobenius Coin theorem 8
 1.6 Number theory practice set 2 ... 9
 1.7 Modular arithmetic (part 3) ... 10
 1.8 Establishing the Frobenius Coin theorem (part 1) 11
 1.9 Number theory practice set 3 ... 13
 1.10 Establishing the Frobenius Coin theorem (part 2) 14
 1.11 Pythagorean triples and parametric solutions 15
 1.12 Number theory practice set 4 ... 16
 1.13 Modular arithmetic (part 4) ... 17
 1.14 Diophantine equations (part 1) .. 18
 1.15 Elementary proofs in number theory 19
 1.16 Number theory practice set 5 .. 20
 1.17 Diophantine equations (part 2) .. 21
 1.18 Number theory practice set 6 .. 22
 1.19 A direct proof of the Fundamental Theorem of Arithmetic 23
 1.20 Diophantine equations (part 3) .. 24
1.15 Elementary proofs in number theory

1. Let p be an odd prime, and let m and n be positive integers such that $\gcd(m, n) = 1$ and

$$\frac{m}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{p-1}.$$

Prove that m is divisible by p. Is the statement true, if we replace p with any positive odd integer greater than 1?

2. Find the smallest positive integer k which is representable in the form $k = 19^m - 5^m$ for some positive integers m and n. An obvious choice for k is 14. But to prove that positive integers less than 14 are not representable in the form of $19^m - 5^m$ is a bit more difficult.

 (a) Prove that we only need to consider two possible candidates 4 and 6.
 (b) Assume that $19^m - 5^m = 6$ for some positive integers n and m. First prove that both n and m are even. Then prove that there are no such numbers n and m.
 (c) Prove that 4 is not representable in the form of $19^m - 5^m$.

3. Assume that (x_0, y_0, z_0, w_0) is a quadruple of positive integers that satisfies the following equation:

$$x^2 + y^2 = 3(z^2 + w^2).$$

Show that one can find a smaller quadruple (x_1, y_1, z_1, w_1) of positive integers that satisfies the same equation, where $x_1 < x_0$, $y_1 < y_0$, $z_1 < z_0$, and $w_1 < w_0$. What conclusion can you draw from this fact? (Note that there are different ways to interpret the term smaller.)

This process is called finite/infinite descent. We will discuss this method in detail in our future series.

4. Show that the set of primes that divide at least one number of the form $n^2 + n - 1$, $n \geq 1$, is infinite.

5. Searching for primes remains a focal point in the field of number theory. A famous result on the distribution of primes is Bertrand’s postulate, proposed by Bertrand in 1845 and proved by Chebyshev using elementary methods in 1850:

If n is an integer greater than 1, then there is always at least one prime p such that $n < p < 2n$.

Prove, without the assumption of this postulate, much weaker results:

 (a) For every positive integer n greater than 2, there is a prime p such that $n < p < n!$.
 (b) If $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, \ldots is the sequence of prime numbers, then the n-th prime number, p_n, is less than or equal to 2^{2n-1}.