Lectures on Challenging Mathematics

Introduction to Math Olympiads

Combinatorics

Summer 2018

Zuming Feng
Phillips Exeter Academy and IDEA Math
zfeng@exeter.edu

Copyright © 2008 – 2018 IDEA MATH.
Contents

1 Combinatorics

1.1 Challenges in enumerative counting (part 1) ... 3
1.2 Mathematical arguments – Proof by contradiction .. 4
1.3 Brain teasers and mathematical reasoning (part 1)..................................... 5
1.4 Challenges in enumerative counting (part 2) ... 6
1.5 Mathematical arguments – The first tour of the Pigeonhole principle 7
1.6 Brain teasers and mathematical reasoning (part 2) 9
1.7 Challenges in enumerative counting (part 3) ...10
1.8 Mathematical arguments – The first tour of mathematical induction 11
1.9 Brain teasers and mathematical reasoning (part 3)12
1.10 Challenges in enumerative counting (part 4) ... 13
1.11 Mathematical arguments – The second tour of the Pigeonhole principle 14
1.12 Brain teasers and mathematical reasoning (part 4) 16
1.13 Challenges in enumerative counting (part 5) ... 17
1.14 Mathematical arguments – The second tour of mathematical induction 18
1.15 Brain teasers and mathematical reasoning (part 5) 19
1.16 Challenges in enumerative counting (part 6) ... 20
1.17 Mathematical arguments – Proof by contradiction and Pigeonhole principle . 21
1.18 Grids (part 1) .. 22
1.19 Mathematical arguments – Parity argument ... 23
1.20 Grids (part 2) .. 24

2 Challenges in Combinatorics ... 25

2.1 Brain teasers and mathematical reasoning (part 6) 25
2.2 Brain teasers and mathematical reasoning (part 7) 27
2.3 Brain teasers and mathematical reasoning (part 8) 28
2.4 Math reasoning gems from AMC10A/12A 2016 29
2.5 Math reasoning gems from AMC10B/12B 2016 30
1.19 Mathematical arguments – Parity argument

1. Twenty five boys and twenty five girls sit around a table. Prove that it is always possible to find a person both of whose neighbors are girls.

2. (Via Svetoslav Savchev from Mathematical Miniatures, by Titu Andreescu and Svetoslav Savchev) A row of minus signs is written on a blackboard. Two players take turns in replacing either a single minus sign by a plus sign or two adjacent minus signs by two plus signs. When a player cannot make a move he or she loses. Can the player who starts force a win?

3. Ten distinct numbers from the set \{0, 1, 2, \ldots, 14\} are to be chosen to fill in the ten circles in the following diagram. The absolute values of the differences of the two numbers joined by each segment must be different from the values for all other segments. Is it possible to do this? Justify your answer.

4. Show that \(n \) is divisible by 4 if and only if there are integers \(x_1, x_2, \ldots, x_n \) with \(|x_1| = |x_2| = \cdots = |x_n| \) such that

\[
x_1 x_2 + x_2 x_3 + \cdots + x_{n-1} x_n + x_n x_1 = 0.
\]

5. Find the maximum value of

\[
| \cdots |x_1 - x_2| - x_3| - \cdots | - x_{2010},
\]

where \((x_1, x_2, \ldots, x_{2010}) \) is a permutation of \((1, 2, \ldots, 2010) \).