Lectures on Challenging Mathematics

Introduction to Math Olympiads

Algebra

Summer 2018

Zuming Feng
Phillips Exeter Academy and IDEA Math
zfeng@exeter.edu

Copyright © 2008 – 2018 IDEA MATH.
Contents

1 Algebra
- 1.1 Quadratic function and its graph (part 1) ... 3
- 1.2 Sums and products (part 1) ... 4
- 1.3 Algebra practice set 1 ... 5
- 1.4 Polynomials and their roots .. 6
- 1.5 The first look at the AM-GM inequality ... 8
- 1.6 Challenges on distance and motion ... 9
- 1.7 Algebra practice set 2 ... 10
- 1.8 Computations with symmetric polynomials .. 11
- 1.9 A touch on weighted AM-GM ... 12
- 1.10 Graphs of absolute value functions (part 1) 13
- 1.11 Algebra practice set 3 ... 14
- 1.12 Quadratic equation and its roots (part 1) ... 15
- 1.13 Sums and products (part 2) .. 16
- 1.14 Quadratic function and its graph (part 2) ... 17
- 1.15 Algebra practice set 4 ... 18

2 Algebra Practices
- 2.1 Sums and products (part 3) ... 19
- 2.2 Quadratic equation and its roots (part 2) ... 20
- 2.3 Sums and products (part 4) ... 21
- 2.4 Graphs of absolute value functions (part 2) 22
- 2.5 Algebra practice set 5 ... 23
1.5 The first look at the AM-GM inequality

1. Let a and b be positive real numbers. Show that $a + b \geq 2\sqrt{ab}$. Sketch the graph of

$$f(x) = \frac{7x^2 + 4}{x}$$

by using an asymptotic line and an asymptotic hyperbola. Determine the extreme values of $f(x)$.

2. Let a, b, c, d be positive real numbers. Prove that

$$\frac{a + b + c + d}{4} \geq \sqrt[4]{abcd} \geq \frac{1}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$

3. Let n be a positive integer. For positive integers a_1, a_2, \ldots, a_n, define their arithmetic mean as

$$A_n = \frac{a_1 + a_2 + \cdots + a_n}{n},$$

their geometric mean as

$$G_n = \sqrt[n]{a_1 a_2 \cdots a_n},$$

and their harmonic mean as

$$H_n = \frac{1}{\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n}}.$$

The AM-GM inequality states that

$$A_n \geq G_n.$$

We will establish this inequality when we introduce mathematical induction. Assume that the AM-GM inequality is true, prove the GM-HM Inequality:

$$G_n \geq H_n.$$

4. Let a, b, c be real numbers with $a \geq b > 1$ and $0 < c < \pi$. Determine the respective extreme values of

$$\log_a \left(\frac{a}{b} \right) + \log_b \left(\frac{b}{a} \right) \quad \text{and} \quad \frac{9c^2 \sin^2 c + 4}{c \sin c}.$$

5. Let $x, y, z > 1$ be real numbers with $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$. Prove that $(x - 1)(y - 1)(z - 1) \geq 8$.