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2.3 Modular inverse

1. Let m be a positive integer. Let a be an integer relatively prime to m, and let b be an
integer. Prove that there exist integers x such that ax ≡ b (mod m), and all these integers
form exactly one residue class modulo m.

2. (Continuation) In particular, setting b = 1 in the last problem shows that if gcd(a,m) = 1,
then there is x such that ax ≡ 1 (mod m). We call such x the inverse of a modulo m, denoted
by a−1 or 1

a (mod m). Because all such numbers form exactly one residue class modulo m,
the inverse of a is uniquely determined (or well defined) modulo m for all integers relatively
prime to m.

Compute the inverse of 5 modulo n for each of the following.

(a) n = 3 (b) n = 4 (c) n = 7
(d) n = 12 (e) n = 21 (f) n = 28

3. Compute the inverse of each of 1, 2, . . . , n− 1 modulo n for each of the following.

(a) n = 11 (b) n = 12 (c) n = 13

4. We want to find the inverse of 11 modulo 37. We could do the following: 11·3 ≡ −4 (mod 37),
11 · 27 ≡ 1 (mod 37). Explain the reasons behind this approach.

The above method has a lot of hit-and-miss flavor. We introduce a more systematic approach.
Note that

37 = 11 · 3 + 4, 11 = 4 · 2 + 3, 4 = 3 · 1 + 1.

Therefore,

1 = 4− 3 · 1 = 4− (11− 4 · 2) · 1 = 4 · 3− 11 = (37− 11 · 3) · 3− 11 = 37 · 3− 11 · 10,

and hence −10 or 27 is the inverse of 11 modulo 37. (This is the Euclidean algorithm, the
most effective way to find the great common divisor of two numbers. We will discuss this
method in detail in the future.)

Use Euclidean algorithm to compute the following inverses.

(a) 7x ≡ 1 (mod 25) (b) 32y ≡ 1 (mod 75) (c) 37z ≡ 1 (mod 374)

5. Compute each of the following.

(a) 10! (mod 11) (b) 11! (mod 12) (c) 12! (mod 13)

Can you make a conjecture on (n− 1)! (mod n) for positive integer n? Can you explain the
reason behind your observation?
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2.4 Wilson’s theorem

1. (Wilson’s theorem) Wilson’s theorem states that for any prime p, (p − 1)! ≡ −1 (mod p).
Prove this Wilson’s theorem.

2. (Continuation) What is the converse of the Wilson’s theorem? Is the converse true?

3. Show that if p is a prime, then x2 ≡ 1 (mod p) if and only if x ≡ ±1 (mod p). Does the
statement hold if p is not a prime?

4. Show that 61! + 1 ≡ 63! + 1 ≡ 0 (mod 71).

5. Given a positive integer n, evaluate gcd(n! + 1, (n+ 1)!).
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2.19 Proofs in modular arithmetic (part 4)

1. Determine whether there exist an infinite set of even positive integers k such that for every
prime p the number p2 + k is composite. If the answer is no, explain why; if the answer is
yes, find such a set.

2. Let p be a prime of the form 3k+ 2 that divides a2 + ab+ b2 for some integers a and b. Prove
that a and b are both divisible by p.

3. For a positive integer n, we consider all its divisors (including 1 and itself). Suppose that p%
of these divisors have their unit digit equal to 3 (For example n = 1001, has eight divisors,
namely 1, 7, 11, 13, 77, 91, 143, 1001. Two of these divisors, namely 13 and 143, have unit
digits equal to 3. Hence for n = 1001, p = 25). Find, when n is any positive integer, the
maximum possible value of p.

4. Let a and b be two relatively prime positive integers. Determine with proof the least integer
m, in terms of a and b, such that every positive integer n, with n > m, can be written in
the form ax+ by for some nonnegative integers x and y? What if x and y are both positive?
What if one of x and y is positive and the other is nonnegative?

5. Prove that for each positive integer n, there are pairwise relatively prime integers k0, k1,
. . . kn, all strictly greater than 1, such that k0k1 . . . kn − 1 is the product of two consecutive
integers.
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2.20 Diophantine equations

1. Determine all integers n such that n4 + 6n3 + 11n2 + 3n+ 31 is a perfect square.

2. Determine the number of ordered pairs of integers (m,n) for which mn ≥ 0 and

m3 + n3 + 99mn = 333.

3. Find all integers (a, b, c, x, y, z) such that

a+ b+ c = xyz,

x+ y + z = abc,

and a ≥ b ≥ c ≥ 1, x ≥ y ≥ z ≥ 1.

4. Let P1P2 . . . P101 be a regular 101-gon. We associate 1 to vertex P1. From P1, count 2 points
in the clockwise direction, we reach P3 and associate it with 2. From the point labeled 2,
count 3 points in the clockwise direction and associate this vertex with 3. Continue this
process until each of 1, 2, 3, . . . , 101 is associated with a vertex. A vertex is called lonely if it
is not associated with any numbers. A vertex is called social if it is associate with more than
one numbers. How many lonely vertices are there? How many social vertices are there?

5. Let p be a prime and n a positive integer. Determine all pairs of positive integers (x, y) such
that

x(x+ 1) = p2ny(y + 1).


