1.8 Season 1 Episode 8, 11/8/2015

1. You are presented with two fuses (lengths of string), each of which will burn for exactly 1 minute, but not uniformly along its length. Can you use them to measure 45 seconds?
2. [AMC10A 2013] Let points $A=(0,0), B=(1,2), C=(3,3)$, and $D=(4,0)$. Quadrilateral $A B C D$ is cut into equal area pieces by a line passing through A. This line intersects $C D$ at point $\left(\frac{p}{q}, \frac{r}{s}\right)$, where these fractions are in lowest terms. What is $p+q+r+s$?
3. The numbers $1,2, \ldots, 8$ are placed in the 3×3 grid, leaving exactly one blank square. (The blank square can be any square in the grid). Such a placement is called okay if in every pair of adjacent squares, either one square is blank or the difference between the two numbers is at most 2 (two squares are considered adjacent if they share a common side). (The placement shown on the right-hand side is not okay because 1 and

2		3
1	4	5
6	8	7

4. On each of 10 sheets of paper are written several (not necessarily distinct) powers of 2 . The sum of the numbers on each sheet is the same. Assume that each power of 2 was written at most M times. Determine the minimum value of M.
5. [IMO 2015, by Merlijn Staps from Netherlands] We say that a finite set \mathcal{S} of points in the plane is balanced if, for any two distinct points A and B in \mathcal{S}, there is a point C in \mathcal{S} such that $A C=B C$. We say that \mathcal{S} is center-free if for any distinct points A, B, and C in \mathcal{S}, there is no point P in \mathcal{S} such that $P A=P B=P C$. Find all positive integers $n \geq 3$ satisfy the following properties: There exist a balanced set consisting of n points and there does not exist a balanced, center-free set consisting of n points.
