1.5 Season 1 Episode 5, 10/18/2015

1. Let $A=(0,0), B=(12,9), C=(2,4), P=(0,4)$, and $Q=(-2,4)$. Decide whether angles $B A C$ and $P A Q$ are the same size (congruent, that is), and give your reasons. (Trigonometry method shall not be used in your solution.)
2. [Putnam 2004] Basketball star Shanille OKeals team statistician keeps track of the number, $S(N)$, of successful free throws she has made in her first N attempts of the season. Early in the season, $S(N)$ was less than 80% of N, but by the end of the season, $S(N)$ was more than 80% of N. Was there necessarily a moment in between when $S(N)$ was exactly 80% of N ?
3. [AIME1 2004, by Zuming Feng] Let $A B C$ be a triangle with sides 3,4, and 5, and $D E F G$ be a 6 -by- 7 rectangle. A segment is drawn to divide triangle $A B C$ into a triangle U_{1} and a trapezoid V_{1}, and another segment is drawn to divide rectangle $D E F G$ into a triangle U_{2} and a trapezoid V_{2} such that U_{1} is similar to U_{2} and V_{1} is similar to V_{2}. The minimum value of the area of U_{1} can be written in the form m / n, where m and n are relatively prime positive integers. Find $m+n$?
4. [Ideamath San Jose Summer Program test, By Matthew Superdock] A robot moves around a plane tiled by equilateral triangles of unit side length. (Each triangle shares a side with three other triangles.) He begins at a vertex of one of the triangles and moves along sides of the triangles. How many paths of length 5 can he take such that after traveling 5 units, he is back at his starting position?
5. [USAMO 2004, by Ricky Liu] Let k be a real number greater than 1 . Show that it is possible to dissect a $1 \times k$ rectangle into two similar, but incongruent, polygons?
