Lectures on Challenging Mathematics

Math Challenges 6

Copyright © 2008-2018 IDEA MATH.

Contents

1 Geometry
x3
1.1 Practices with geometric computations (part 1)
1.2 Area, similarity, and Ceva's theorem (part 1) 3 4
1.3 Practices with geometric computations (part 2) 5
1.4 Area, similarity, and Ceva's theorem (part 2) 6
1.5 Practices with geometric computations (part 3) 8
1.6 Revisiting the centers of a triangle 9
1.7 Area, similarity, and Ceva's theorem (part3) 10
1.8 Tangent circles 11
$\infty_{1.9}$ Area, similarity, and Ceva's theorem (part 4) 12
1.10 Practices with geometric computations (part 4) 13
2 Geometry Challenges 15
2.1 Geometry project 1: Selected medium level geometry problems from AIME 15
-2.2 Challenges in geometry calculations (part 1) 16
2.3 Geometric project 2: Tangent circles 17
2.4 Challenges in geometry calculations (part 2) 18
J2.5 Geometry project 3: Folding, unfolding, and 3-D visions 19

1.7 Area, similarity, and Ceva's theorem (part 3)

1. The arcs of four quarter-circles are drawn inside a circle intersecting the circle in pairs of points: $(A, B),(B, C),(C, D),(D, A)$, respectively. If all of the five circles have radius 1 cm , what is the area, in square centimeters, of the region enclosed by the four quarter-circles?
2. Construct, with only an unmarked straight edge, a triangle $R G B$ (of your choice, certainly it doesn't have to be equilateral) with an interior point P such that such that the area ratio of triangles $P G B, P B R, P R G$ is $[P G B]:[P B R]:[P R G]=2: 3: 5$.

Accurate drawing is the theme of the problem. You should use the graph paper well and choose your triangle (not necessarily an equilateral triangle at alf) wisely to avoid any unnecessary estimations. You can only draw lines with the straight edge, and you can't estimate any non-lattice points unless they are the intersection of the grid lines or the lines constructed by the straight edge.
3. In triangle $R G B$, point X divides side $R G$ in the ratio $R X: X G=m: n$, and point Y divides side $G B$ in the ratio $G Y: Y B=p: q$. Let C be the intersection of segments $B X$ and $R Y$. Find the ratios of areas
(a) $[C G B]:[C B R]$;
(b) $[C B R]:[C R G]$;
(c) $[C G B]:[C R G]$;
(d) $[C G B]:[C B R]:[C R G]$.

Also find the ratio into which the line $G C$ divides the side $B R$.
4. Mixtures of three quantities can be modeled geometrically by using a triangle of area 1. For example, if point P is inside the triangle $A B C$, then $[A P B]+[B P C]+[C P A]=1$.
(a) What geometric figure would be suitable for describing a mixture of two quantities?
(b) Kirby wants to use a point inside a unit square to describe a mixture of four quantities. After some careful thought, he declares that this method does not work and lists a few reasons. Which of these reasons are right?

- There is no way to assign a tri@ngle a negative quantity.
- No triangle can represent a quantity that is more than 0.5 .
- Two of the triangles together always represent a total quantity of 0.5.
(c) What geometric figure would be suitable for describing a mixture of four quantities? Provide details on constructing such mixture.

5. In rectangle $A B C D, A B=11$ and $B C=13$. Points P and Q lie on sides $A B$ and $A D$ respectively with $B P=2$. Diagonal $B D$ meets segments $C P$ and $C Q$ in X and Y, respectively. Given that the area of triangle $C X Y$ is the equal to the sum of the areas of triangles $B P X$ and $D Q Y$, find the length of segment $D Q$.
