Lectures on Challenging Mathematics

Math Challenges 6

Counting

Summer 2018

Zuming Feng
Phillips Exeter Academy and IDEA Math
zfeng@exeter.edu

Contents

Cou 1.1 21.2	
⊷ Cou	nting 3
1.1	Bijections
51.2	Recursive counting
$\Box 1.3$	A short review on counting models
1.4	A short review on counting models
1.5	Practices with binomial coefficients (part 1)
$\bigcirc^{1.6}_{1.7}$	Let's count (part 2)
1.7	Let's count (part 2)
1.8	Let's count (part 3)
∞ 1.9	Practices with binomial coefficients (part 3)
\leq 1.10	Let's count (part 4)
\sim	
It	
<u>S</u>	
Ţ	445
SC.	
Ō	
Copyright	
(\circ)	
	Talle Filal 15°C

1.9 Practices with binomial coefficients (part 3)

- 1. Two identical decks of cards are shuffled together. What is the probability that the first 52 cards will contain all eight Aces?
- 2. Consider a 3×3 point array. Five of the nine points will be colored in red, and the rest will be colored in blue.
 - (a) Determine the total number of coloring schemes. (Two coloring schemes are considered different even though one can be obtained from the other via a rotation and/or a reflection.)
 - (b) Some these coloring schemes satisfy the following property: There exist three blue points that are collinear and there does not exist three red points that are collinear. How many such coloring schemes are there?
 - 3. Find the smallest positive integer n for which the expansion of $(xy 3x + 7y 21)^n$, after like terms have been collected, has at least 1996 terms.
 - A 5-tuple $(x_1, x_2, x_3, x_4, x_5)$ of nonnegative integers is called *magical* if exactly one of the five numbers is odd and the sum of these five numbers is equal to 99. How many magical 5-tuples are there?
- 5. A license plate consists of 8 digits. It is called *even* if it contains an even number of 0's. Find the number of even license plates.

