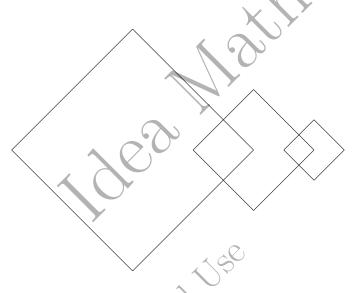
Lectures on Challenging Mathematics

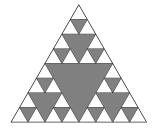
Math Challenges 6

Algebra

Summer 2018


Zuming Feng
Phillips Exeter Academy and IDEA Math
zfeng@exeter.edu

Contents


7		
ਜੋ KAlg€	phra	3
1.1		3
$\mathfrak{S}_{1.2}$		4
$\bigcirc 1.3$	Sums and products	
1.4		7
1.5	Fractals and recursive relations (part 1)	8
$\bigcirc 1.6$	Focus, directrix, and parabolas (part 2)	0
1.7	Computations with logarithms	
1.8	Focus, directrix, and parabolas (part 3)	
\approx 1.9	Fractals and recursive relations (part 2)	
1.10	Vieta's relations and the quadratic equation	4
CV		
<u>6</u>		
YI		
d		
Jopyright		

1.5 Fractals and recursive relations (part 1)

- 1. In the sequence $2001, 2002, 2003, \ldots$, each term after the third is found by subtracting the previous term from the sum of the two terms that precede that term. For example, the fourth term is 2001 + 2002 2003 = 2000. What is the 2004th term in this sequence?
- 2. Square S_1 is 1×1 . For $i \geq 1$, the lengths of the sides of square S_{i+1} are half the lengths of the sides of square S_i , two adjacent sides of square S_i are perpendicular bisectors of two adjacent sides of square S_{i+1} , and the other two sides of square S_{i+1} are the perpendicular bisectors of two adjacent sides of square S_{i+2} . Let \mathcal{R} denote region consisting of points lying in at least one of S_1, S_2, \ldots, S_{10} . Find the total area of \mathcal{R} .

An equilateral triangle of unit area is painted step-by-step as follows: Step 1 consists of painting the triangle formed by joining the midpoints of the sides. Step 2 then consists of applying the same midpoint-triangle process to each of the three small unpainted triangles. Step 3 then consists of applying the midpoint-triangle process to each of the nine very small unpainted triangles. The result is shown at right.

In general, each step consists of applying the midpoint-triangle process to each of the (many) remaining unpainted triangles left by the preceding step. Let P_n be the area that was painted during step n, and let U_n be the total unpainted area left after n steps have been completed.

Find U_1 , U_2 , U_3 , P_1 , P_2 , and P_3 . Write a recursive description of U_n in terms of U_{n-1} . Find an explicit formula for U_n .

4. (Continuation) Write a recursive description of P_n in terms of P_{n-1} . Find an explicit formula for P_n .

Use your work to evaluate the sum

$$\frac{1}{4} + \frac{3}{16} + \frac{9}{64} + \dots + \frac{3^{99}}{4^{100}} + \frac{3^{100}}{4^{101}}.$$

Express the series using sigma notation.

5. Ten guys sit in ten seats in a line. All ten guys get up and then reseat themselves using all ten seats, each sitting in the seat he was in before or a seat next to the one he occupied before. In how many ways can the guys be reseated?

