Lectures on Challenging Mathematics

Math Challenges 6

Copyright © 2008-2018 IDEA MATH.

Contents

1 Algebra $\begin{aligned} & 3 \\ & 3\end{aligned}$1.1 More on distance and motion
1.2 The quadratic function and its graph 4
1.3 Sums and products 5
1.4 Focus, directrix, and parabolas (part 1) 7
${ }^{\infty} 1.5$ Fractals and recursive relations (part 1) 8
1.6 Focus, directrix, and parabolas (part 2) 10
${ }^{\circ}$ 1.7 Computations with logarithms 11
1.8 Focus, directrix, and parabolas (part 3) 12
∞ 1.9 Fractals and recursive relations (part-2) 13
1.10 Vieta's relations and the quadratic equation 14

1.5 Fractals and recursive relations (part 1)

1. In the sequence $2001,2002,2003, \ldots$, each term after the third is found by subtracting the previous term from the sum of the two terms that precede that term. For example, the fourth term is $2001+2002-2003=2000$. What is the $2004^{\text {th }}$ term in this sequence?
2. Square S_{1} is 1×1. For $i \geq 1$, the lengths of the sides of square S_{i+1} are half the lengths of the sides of square S_{i}, two adjacent sides of square S_{i} are perpendicular bisectors of two adjacent sides of square S_{i+1}, and the other two sides of square S_{i+1} are the perpendicular bisectors of two adjacent sides of square S_{i+2}. Let \mathcal{R} denote region consisting of points lying in at least one of $S_{1}, S_{2}, \ldots, S_{10}$. Find the total area of \mathcal{R}.

An equilateral triangle of unit area is paintedstep-by-step as follows: Step 1 consists of painting the triangle formed by joining the midpoints of the sides. Step 2 then consists of applying the same midpoint-triangle process to each of the three small unpainted triangles. Step 3 then consists of applying the midpoint-triangle process to each of the nine very small unpainted triangles. The result is shown at right.

In general, each step consists of applying the midpoint-triangle process to each of the (many) remaining unpainted triangles left by the preceding step. Let P_{n} be the area that was painted during step n, and let U_{n} be the total unpainted area left after n steps have been completed. Find $U_{1}, U_{2}, U_{3}, P_{1}, P_{2}$, and P_{3}. Write a recursive description of U_{n} in terms of U_{n-1}. Find an explicit formula for U_{n}.
4. (Continuation) Write a recursive description of P_{n} in terms of P_{n-1}. Find an explicit formula for P_{n}.

Use your work to evaluate the sum

$$
\frac{1}{4}+\frac{3}{16}+\frac{9}{64}+\cdots+\frac{3^{99}}{4^{100}}+\frac{3^{100}}{4^{101}}
$$

Express the series using sigma notation.
5. Ten guys sit in ten seats in a line. All ten guys get up and then reseat themselves using all ten seats, each sitting in the seat he was in before or a seat next to the one he occupied before. In how many ways can the guys be reseated?

