Lectures on Challenging Mathematics

Math Challenges 5

Geometry

Summer 2018

Zuming Feng Phillips Exeter Academy and IDEA Math zfeng@exeter.edu

Contents

th	A .	
∏Geo	metry	3
-1.1		3
$\mathfrak{S}_{1.2}$		4
$\bigcirc 1.3$	Practices with geometric computations (part 1)	5
1.4	Practices with geometric computations (part 2) \	6
1.5	Arcs, angles, and the Power-of-a-point theorem	7
$\bigcirc 1.6$	Practices with geometric computations (part 3)	
1.7	Revisiting special angles (part 3)	
1.8	Practices with geometric computations (part 4)	
\approx 1.9	Producing similar triangles	
	Practices with geometric computations (part 5)	
	Folding, unfolding, and 3-D vision	
	Practices with geometric computations (part 6)	
54.13	Revisiting special angles (part 4)	.5
1.14	Practices with geometric computations (part 7)	
1.15	Tessellations and tilings	. (
-9		
	$\mathbf{x}^{\mathbf{C}^{\mathbf{y}}}$	

1.4 Practices with geometric computations (part 2)

- 1. Farmer Chong Gu glues together four equilateral triangles of side length 1 such that their edges coincide. He then drives in a stake at each vertex of the original triangles and puts a rubber band around all the stakes. Find the minimum possible length of the rubber band.
- 2. Two distinct lines pass through the center of three concentric circles of radii 1, 2, and 3. In the right-hand side figure shown above, the total area of the closed regions labeled A through F is 8/13 of the total area of unlabeled closed regions. What is the degree measure of the acute angle formed by the two lines?
 - In rectangle ABCD, we have AB = 8, BC = 9. Point H and E lie on sides BC and AD, respectively, with BH = 6 and DE = 4. Line EC intersects line AH at G, and F is the foot of the perpendicular from G to line AD. Find GF.

- | 4. The incircle of triangle ABC touches the sides AB, BC, CA at F, D, E, respectively. Set AB = c, BC = a, CA = b. Express the length of each of the segments BD, DC, CE, EA, AF, FB in terms of a, b, c.
 - Equilateral triangle XYZ is inscribed in a unit circle ω . Let W be a point other than X in the plane such that triangle WYZ is also equilateral. Determine the area of the region inside triangle WYZ that lies outside circle ω .