# Lectures on Challenging Mathematics 

## Integrated Mathematics 5



Copyright © 2008-2019 IDEA MATH.

## Contents

1 Trigonometry and circular geometry1.1 Sectors, intersecting lines and circles (part 1)\%.3
3
1.2 Right triangle trigonometry (part 1) ..... 5
1.3 Introduction to centers of a triangle ..... 6
1.4 Right triangle trigonometry (part 2) ..... 8
1.5 Arcs and angles (part 1) ..... 9
1.6 Right triangle trigonometry (part 3) ..... 10
1.7 The circumcenter of a triangle ..... 11
1.8 Right triangle trigonometry (part (4) ..... 12
$\infty_{1.9}$ Sectors, intersecting lines and circles (part 2) ..... 13
1.10 Right triangle trigonometry (part 5 ) ..... 14
1.11 Arcs and angles (part 2) ..... 15
$\pm$ 1.12 The centroid of a triangle ..... 16
1.13 Arcs and angles (part 3) ..... 17
E1.14 Angle-Bisector theorem ..... 18
1.15 The quest of the right triangle (part 1) ..... 19
1.16 Arcs and angles (part 4) ..... 20
1.17 The incenter and orthocenter of a triangle ..... 21
1.18 The quest of the right triangle (part 2) ..... 23
1.19 Arcs and angles (part 5) ..... 24
1.20 Centers of an isosceles triangle ..... 25
2 Challenges in trigonometry and circular geometry ..... 27
2.1 Geometry practice set 1 ..... 27
2.2 Geometry practice set 2 ..... 29
2.3 Revisiting the centers of a triangle ..... 30
2.4 Geometry practice set 3 ..... 31
2.5 Geometry practice set 4 ..... 32

### 1.6 Right triangle trigonometry (part 3)

1. Let rays $O A$ and $O B$ form angle $\theta$. Choose point $P$ on ray $O A$. Let $Q$ be the foot (that is the bottom) of the perpendicular line segment from $P$ to the ray $O B$.

We define the sine function (sin) as follows,

$$
\sin \theta=\frac{P Q}{O P}
$$

We need to show that the sine function is well defined; that is, its value only depends on the size of $\theta$, but not the choice of $P$. To do so, let $P_{1}$ denote another point lying on ray $O A$, and let $Q_{1}$ be the foot of perpendicular from $P_{1}$ to ray $O B$. Explain why right triangles $O P Q$ and
 $O P_{1} Q_{1}$ are similar to each other, and hence pairs of corresponding ratios, such as $\frac{P Q}{O P}$ and $\frac{P_{P} Q_{1}}{O P}$, are all equal. Therefore, the sine function
is indeed well defined.
Evaluate $\sin 30^{\circ}, \sin 45^{\circ}$, and $\sin 60^{\circ}$. Check your answers with a calculating device.
2. A ladder leans against a side of a building, making a 63 -degree angle with the ground, and reaching over a fence that is 6 feet from the building. The ladder barely touches the top of the fence, which is 8 feet tall. Find the length of the ladder.
3. A line of positive slope is drawn so that it makes a 60-degree angle where it intersects the $x$-axis. Peter and Curtis were asked to find the slope of this line. Peter said, "If the angle were 45 -degree, the slope would be 1 . I think the'slope for the 60 -degree case is $4 / 3$, which is equal to $60 / 45$." Curtis commented, "I think there are some flaws in your reasoning. If I replace 60 -degree by some other angle in your-method, I get some obviously wrong answer." What angle does Curtis had in mind? Howte, solve this problem correctly?

One day at the beach, Kelly flies a kité, whose string makes a 37-degree elevation angle with the ground. The length of the string is 168 feet. How high above the ground is the kite, to the nearest foot? What (unrealistic) assumptions did you make in answering this question?
5. Find the angles in triangle $A B C$ where
(a) $A=(0,1), B=(0,9), C=(5,4)$;
(b) $A=(1,2), B=(7,5), C=(5,-9)$.

### 1.19 Arcs and angles (part 5)

1. Two of the tangents to a circle meet at $Q$, which is 25 cm from the center. The circle has a 7 cm radius. To the nearest tenth of a degree, find the angle formed at $Q$ by the tangents.
2. Crossed Chords Theorem Revisited. Suppose that $A, B, C, D$ lie (in that order) on a circle, and that secant lines $A B$ and $C D$ meet in a point $Q$ outside the circle.

(a) Spot a pair of similar triangles in each of the diagrams shown.
(b) Show that $Q A \cdot Q B=Q C \cdot Q D$.
3. The segments $G A$ and $G B$ are tangent to a circle at $A$ and $B$, and $A G B$ is a 60 -degree angle. Given that $G A=12 \mathrm{~cm}$, find the distance from $G$ to the nearest point on the circle.
4. Suppose that $M P$ is a diameter of a circle centered at $O$, and $Q$ is any other point on the circle. Draw the line through $O$ that is parallel to $M Q$, and let $R$ be the point where it meets minor arc $P Q$. Prove that $R$ is the midpoint of minor arc $P Q$.

In quadrilateral $F A I R, F A=15, A I=24, I R=7, R F=20$, and $A R=25$. Diagonals $A R$ and $F I$ meet in $P$. Find the distance from $P$ to the midpoint of segment $A R$.

