Lectures on Challenging Mathematics

Math Challenges 4

Number Sense

Winter 2018

Zuming Feng Phillips Exeter Academy and IDEA Math zfeng@exeter.edu

Contents

at		
1⊳Nun	nber Sense	
1.1	Word problems and simple Diophantine equations (part 1)	3
51.2	The sum of consecutive squares	Ł
$\bigcirc 1.3$	Word problems and simple Diophantine equations (part 2)	í
	Cubes and their sums and differences (part 1))
	Factoring Diophantine equations	7
$\bigcirc 1.6$ 1.7	Playing with numbers (part 1)	3
1.7	Cubes and their sums and differences (part 2))
1.8	Word problems and simple Diophantine equations (part 3))
$\cong 1.9$	Playing with numbers (part 2)	L
\leq 1.10	Small cubes and big cubes	2
\mathcal{O}_{1}		
It		
	\mathcal{O}_{i}	
L	146	
0[
Copyright		
\bigcirc		

1.7 Cubes and their sums and differences (part 2)

1. The number 1729 is known as the *Hardy-Ramanujan number* after a famous anecdote of the British mathematician G. H. Hardy regarding a visit to the hospital to see the Indian mathematician Srinivasa Ramanujan. The following is from *Quotations from Hardy*:

I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways."

Given that one way is $1729 = 12^3 + 1^3$, find the other way. Use these two representations to factor 1729.

(Continuation) In memory of this incident, the least number which is the sum of two positive cubes in n different ways is called the $n^{\rm th}$ taxicab number. Hence 1729 is the $2^{\rm nd}$ taxicab number, and it was first published by F. de Bessy in 1657. The $3^{\rm rd}$ taxicab number, discovered by Leech in 1957, is

$$87539319 = 167^3 + 436^3 = 228^3 + 423^3 = 255^3 + 414^3.$$

Factor the 3^{rd} taxicab number. (This can be done with clever reasoning and estimation, without the assistance of any calculating device.)

Given that $5^x + 5^{-x} = 5$, compute $5^{3x} + 5^{-3x}$.

Find all pairs of integers (a,b) such that $a^3 + b^3 = 91$.

. Show that $\sqrt[3]{2+\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}$ is a solution of the equation $x^3-3x-4=0$.