Lectures on Challenging Mathematics

Math Challenges 4

Algebra

Winter 2018

Zuming Feng
Phillips Exeter Academy and IDEA Math
zfeng@exeter.edu

Contents

Hath Malge	A A	
$\mathbf{\Xi}^{\mathbf{C}}$ Alge	ebra	3
1.1	Squares and cubes	3
$\mathfrak{S}_{1.2}$	Arithmetic and algebra techniques (part 1)	4
$\bigcirc 1.3$	Quadratic relations (part 1)	5
1.4	Arithmetic and algebra techniques (part 2)	6
1.5	Challenges with graphs (part 1)	7
$\bigcirc_{1.7}^{1.6}$	Arithmetic and algebra techniques (part 3)	8
1.7	Quadratic relations (part 2)	9
1.8	Arithmetic and algebra techniques (part 4)	0
∞ 1.9	Challenges with graphs (part 2)	1
\leq 1.10	Challenges with graphs (part 2)	12
		_
	11	.3
2.1	Arithmetic and algebra techniques (part 6)	13
\cdot $=$ 2.2	Challenges with graphs (part 3)	14
≥ 2.3	Arithmetic and algebra techniques (part 7)	15
2.4	Why certain radical numbers are irrational?	16
\smile 2.5	Arithmetic and algebra techniques (part 8)	17
٥		

1.8 Arithmetic and algebra techniques (part 4)

- 1. A rectangle has area $\frac{T}{4} + \frac{1}{8}$ and a diagonal of length $\frac{T}{2}$. Express the perimeter of the rectangle in terms of T.
- 2. Consider the sequence

$$s_1 = 1 + 2$$
, $s_2 = 1 + 2 + 2^2$, $s_3 = 1 + 2 + 2^2 + 2^3$,...

- (a) Evaluate s_1, s_2, s_3, s_4, s_5 . Do you observe any pattern? Check your pattern with the actual values of s_6 and s_7 .
- (b) Explain the reason behind your observation. You might want to consider either $1+s_n$ or $s_n + 1$ – even though these two expressions are equal to each other, one is more helpful than the other.
- (c) Factor s_{15} and s_{16} .
- Odell and Kershaw run for 30 minutes on a circular track. Odell runs clockwise at 250 m/min and uses the inner lane with a radius of 50 meters. Kershaw runs counterclockwise at 300 m/min and uses the outer lane with a radius of 60 meters, starting on the same radial line m/min and uses the outer lane with a radius of 60 meters, starting on the same radial line as Odell. How many times after the start do they pass each other?
 - Find all integers n such that p(n) is a perfect square where

(a)
$$p(n) = n^2 + 24$$

(b)
$$p(n) = n^2 + 6n - 212$$
;

(a)
$$p(n) = n^2 + 24$$
;
(c) $p(n) = n^2 - 20n - 33$;

(d)
$$p(n) = n^2 - 19n + 91$$
.

If x, y, and z are positive real numbers satisfying

we real numbers satisfying
$$x + \frac{1}{y} = 4$$
, $y + \frac{1}{z} = 1$, and $z + \frac{1}{x} = \frac{7}{3}$,

then what is xyz?