Lectures on Challenging Mathematics

Integrated Mathematics 4

Geometry

Summer 2019

Zuming Feng Phillips Exeter Academy and IDEA Math zfeng@exeter.edu

Contents

	3
	3
C + · · · 1	
e of triangles	
n (part 1)	4
1)	5
eorem (part 1)	6
2)	7
eorem (part 2)	8
as (part 1)	9
congruence theorem? (part 1)	10
	15
	16
8	17
te geometry	18
s and quadrilaterals (part 1)	19
$n \text{ (part 2)} \dots \dots$	20
<u> </u>	
_	
	ce of triangles m (part 1) 1) 2) ceorem (part 1) 2) ns (part 1) 1 congruence theorem? (part 1) ns (part 2) 1 congruence theorem? (part 2) 2 crdinate plane (part 1) 2 crdinate plane (part 1) 3 crdinate plane (part 1) 4 congruence theorem? (part 2) 5 crdinate plane (part 1) 6 crdinate plane (part 2) 6 creasoning

Trapezoids (part 2) **15**

1. Given an isosceles trapezoid with bases of 8 and 18 and an area of 156 square units, what is

- 3. A trapezoid has 11-inch and 25-inch parallel sides, and an area of 216 square unit marked on DA so that DR = RS = SA = 5. Find the lengths PS and QR.

 3. A trapezoid has 11-inch and 25-inch parallel sides, and an area of 216 square inches.

 (a) How far apart are the parallel sides?

 (b) If one of the non-parallel sides is 13 inches long, how long is the two answers to this question. It is best to make a separation of the problem of the problem.

 Accurate drawing is the theme of the problem of the problem of the problem of the problem.

 Draw a diagram of a mand N are the problem of the problem of the problem of the problem of the problem. 2. In a trapezoid ABCD, AB is parallel to CD, and AB = 10, BC = 9, CD = 22, and DA = 15. Points P and Q are marked on BC so that BP = PQ = QC = 3, and points R and S are
 - - (b) If one of the non-parallel sides is 13 inches long, how long is the other one? There are
 - Accurate drawing is the theme of the problem. You should use your grid book well. You

Draw a diagram of a non-isosceles trapezoid ABCD with $AB \parallel CD$ and MN = 9, where M

Is it possible that diagonals AC and BD divide the segment MN into three parts of lengths 4, 1, 4? If not, explain the reason; if yes, can you draw two accurate diagrams of two such trapezoids, one isosceles and one non-isosceles. From this information, is it possible to infer anything about the distance that separates the parallel sides? Explain.

5. (Continuation) Is it possible that diagonals AC and BD divide the segment MN into three parts of lengths 2, 3, 4? If yes, draw an accurate diagram of such a trapezoid; if not, explain the reason.

Pythagorean theorem (part 2) 1.18

- 1. In triangle ABC, $\angle C = 90^{\circ}$. Medians are drawn from point A and point B in this right triangle to divide segment BC and AC in half, respectively. The lengths of the medians are 6 and $2\sqrt{11}$ units, respectively. How many units are in the length of segment AB?
- 2. Let DEF be a triangle and H the foot of the altitude from D to EF. If DE = 60, DF = 35, and DH = 21, what is the difference between the minimum and the maximum possible values for the area of DEF?

Given that ADEB and BEFC are rectangles, ABC is a right angle, AD = 240, DE = 150, and EF = 50, find the distance from point G to point C.

5. (Continuation) Peyton's next workout loop is AHCA, where H is a point on the path AG, chosen to make the slope of HC equal 20%. Find the ratio AH/AG, and explain your choice.