Lectures on Challenging Mathematics ## Math Challenges 3 Number Sense Winter 2018 $\begin{array}{c} {\rm Zuming\ Feng} \\ {\rm Phillips\ Exeter\ Academy\ and\ IDEA\ Math} \\ {\rm zfeng@exeter.edu} \end{array}$ ## Contents | ath | | |------------------------------|---| | Number Sense | | | 1.1 | Essential terminology in number theory (part 1) | | $\mathfrak{S}_{1.2}$ | Essential terminology in number theory (part 2) | | $\bigcirc 1.3$ | Number sense (part 1) | | 1.4 | Number sense (part 1) | | 1.5 | Number sense (part 2) | | $\bigcirc 1.6$ | The division algorithm | | \sim 1.7 | The division algorithm | | 1.8 | Divisibility rules for small numbers (part 1) | | ∞ 1.9 | Multiples of small numbers (part 1) | | $\gtrsim 1.10$ | Divisibility rules for small numbers (part 2) | | 2⊢Number Sense Supplement 15 | | | -2.1 | Multiples of small numbers (part 2) | | 2.1 | Divisibility rules for small numbers (part 3) | | ≥ 2.3 | Divisibility rules for small numbers (part 3) | | do | | | 1.2.3
1.2.3 | | | \odot | | | | | | | | ## 1.9 Multiples of small numbers (part 1) 1. Complete the following sentence: If the sum of three integers is divisible by 3, then the remainders of these integers divided by 3 are either ... or - 2. Every high school in the city of Euclid sent a team of 3 students to a math contest. Each participant in the contest received a different score. Andrea's score was the median among all students, and hers was the highest score on her team. Andrea's teammates Beth and Carla placed 37th and 64th, respectively. How many schools are in the city? - Consider the statement: Positive integer $n = \overline{a_h a_{h-1} \dots a_1 a_0}$ is divisible by 7 if and only if the difference $m = \overline{a_h a_{h-1} \dots a_1} - 2 \cdot a_0$ is divisible by 7. Understand this statement by checking at least 5 numerical examples that no one else in the class will think of. Show that this statement is true. - 4. Let m be a positive integer divisible by 99. Show that integer n obtained by reversing the