Lectures on Challenging Mathematics

Math Olympiads

Geometry

Summer 2018

Zuming Feng
Phillips Exeter Academy and IDEA Math
zfeng@exeter.edu

Contents

th		
ದ Geo	metry	3
1.1	Practices with geometry computations (part 1)	3
$\mathfrak{S}_{1.2}$	Angle chasing and centers of triangles (part 1)	4
$\bigcirc 1.3$	Radical axis and radical center	5
1.4	Angle chasing and centers of triangles (part 2)	6
1.5	Tiles and coloring (part 1)	7
01.6 1.7		8
	Introduction to Simson line and Miquel's theorem	9
1.8	Angle chasing and cyclic quadrilaterals (part 1)	10
∞ 1.9	Reflection in geometric computations	
\approx 1.10	Tiles and coloring (part 2)	12
	Angle chasing and cyclic quadrilaterals (part 2)	
1.12	The trigonometric form of the Ceva's theorem	14
5.1.13	Angle chasing and cyclic quadrilaterals (part 3)	15
$\Box 1.14$	Practices with geometry computations (part 2)	16
$\lesssim 1.15$	Tiles and coloring (part 3)	17
51.16	Euler's formula	18
$\bigcirc 1.17$	Selected entry level Olympiad geometry problems (part 1)	19
	Tiles and coloring (part 4)	
	Selected entry level Olympiad geometry problems (part 2)	
1.20	Practices with geometry computations (part 3)	22

1.13 Angle chasing and cyclic quadrilaterals (part 3)

- 1. [New Problems in Euclidean Geometry, by David Monk] Let ABCD be a cyclic quadrilateral. The perpendicular bisector of segment CD meets lines AD and BD at P and Q, respectively. Prove that $\angle ACQ = \angle PCB$.
- 2. Let ABCD be a cyclic quadrilateral with BC = BA + CD. Prove that the bisectors of angles A and D intersect on segment BC.
- 3. [New Problems in Euclidean Geometry, by David Monk] Quadrilateral ABCD is inscribed in circle ω . Diagonals AC and BD meet at R, and rays AD and BC meet at P. Let X,Y,Z be the feet of the perpendiculars from D to lines AC,BC,PR, respectively. Prove that the circumcircle of XYZ passes through the midpoint of segment CD.
 - 4. [New Problems in Euclidean Geometry, by David Monk] In triangle ABC, $AB \neq AC$. Point D is the foot of the perpendicular from A to line BC. Points M and N are the midpoints of segments BC and AD, respectively. Point P is the foot of the perpendicular from B to line AM. Prove that line MN is tangent to the circumcircle of CMP.
 - 5. Let ABC be an acute triangle, and let AA_1 , BB_1 , and CC_1 be its altitudes. Segments AA_1 and B_1C_1 meet at point K. The perpendicular bisector of segment A_1K intersects sides AB and AC at L and M, respectively. Prove that points A, A_1 , L, and M lie on a circle.

Internal Use

©Copyright 2008 − 2018 Idga Math