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“Cogito ergo Sum” — “I think, therefore I am”
René Descartes (1596-1650)

“Success is not final, failure is not fatal, it is the courage to continue that counts.”
Winston Churchill (1874-1965)

“I can see that without being excited, mathematics can look pointless and cold. The beauty of
mathematics only shows itself to more patient followers.”
Maryam Mirzakhani (1977-2017)
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1.9 Revisiting modular arithmetic (part 3)

1. Solve the following equations:

(a) 22 =1 (mod 15) (b) 22 =1 (mod 65)
(c) 22 = —1 (mod 15) (d) 22 = -1 (mod 65)
Specify the number of solutions for each equation. Explain how solving equations
7?2 =1 (mod 3), 2?2 = —1 (mod 3),
2?2 =1 (mod 5), 2?2 = —1 (mod 5),
2?2 =1 (mod 13), 2?2 = —1 (mod 13),

could have helped to predict the result.

In Algebra, solving a quadratic equation is much harder than solving a linear equation—
remember the so-called quadratic formula? In modular arithmetic, solving a linear equation
is already challenging, and solving a quadratic equation is much more challenging. The most
important result on this front is the law of quadratic reciprocity. It was conjectured by Euler
and Legendre and first proved by Gauss, who referred to it as the “fundamental theorem” in
his Disquisitiones Arithmeticae. This is a theorem you shall learn (and learn well) in a formal
number theory course.

2. Consider the following statement:

There are n — 1 consecutive integers such that it is possible to divide them into two
disjoint sets A and B such that the product of numbers in A is congruent to the
product of numbers in B modulo n.

Determine if the statement is true for
(a) n=13 (b) n=19.

3. Find all positive integers n greater than 1 such that there exist two complete sets of residue
classes modulo n {ay,ag,...,a,} and {b1,be,...,b,} such that {a; + b1, a2 + ba,...,an + by}
is a complete set of residue classes modulo n.

4. (Continuation) Prove that for each positive integer n there exist two complete sets of residue
classes modulo n {ay,ag,...,a,} and {b1,bo,...,b,} such that {a; + b1, a2 + b2, ..., an + by}
contains at least n — 1 distinct congruence classes modulo n.

5. Show that there are infinitely many n such that n! — 1 is divisible by at least two distinct
primes.
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1.13 Fermat’s Little Theorem

1. Determine all positive integers n such that n% — 1 is divisible by each of 2, 3, 5, 7, and 13.
2. (a) Find the smallest positive integer m for each of the following congruence relations.
(i) 2™ =1 (mod 13) (ii) 2™ =1 (mod 31)
(i) 5™ =1 (mod 13) (il) 5™ =1 (mod 31)
(b) Explain why % is a 6-digit repeating decimal.
(c) Explain why 3% is a 15-digit repeating decimal.

3. Let a and m be relatively prime integers. Prove that the sequence
a, a*, a°, ... (mod m)
is periodic and that a* = 1 (mod m) for some integer k.

4. Fermat’s Little Theorem states that if prime p is a prime and a is a positive integer relatively
prime to p, then a?~! =1 (mod p).

(a) Prove Fermat’s Little Theorem by considering the set {a,2a,3a,...,(p — 1)a}.

(b) Prove Fermat’s Little Theorem inductively by using binomial expansion.

5. We intend to show that there are infinitely many primes of the form 4k + 1. Complete the
following statements.

Assume on the contrary that there are only many primes of the form
4k + 1. Thus let P be the greatest prime of the form 4k + 1. We consider the
number n = (P))? + 1. Let p be a divisor of n. Clearly, p is

than P. (In particular, p is odd and prime to .) Because p is
a of n, we have (P!)? = —1 (mod p). Because p is odd, is an

. . . _1\th ]
integer and so we can raise both sides to the (p?l) power to obtain

=(-1)"Z (mod p).

By Theorem, the side of the above congruence is

congruent to 1 modulo p. It therefore follows that 1 = (_1)%1 (mod p). Because
p is odd, must be even, implying that p is also of the form 4k + 1,
contradicting the assumption that P is the prime of the form 4k + 1.
Therefore, our original assumption was false, hence there are many primes
of the form 4k + 1.
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