Lectures on Challenging Mathematics

Introduction to Math Olympiads

Geometry

Summer 2021

Zuming Feng
Phillips Exeter Academy and IDEA Math zfeng@exeter.edu
"Success is not final, failure is not fatal, it is the courage to continue that counts."
Winston Churchill (1874-1965)

I can see that without being excited, mathematics can look pointless and cold. The beauty of mathematics only shows itself to more patient followers."

Maryam Mirzakhani (1977-2017)

Contents

1 Math Olympiads 2, Geometry 3
1.1 Angle chasing and the centers of triangles (part 1) 3
1.2 Ceva's theorem and Menelaus' theorem (part 1) 4
1.3 Regular polygons and geometric computations 5
1.4 Angle chasing and centers of triangles (part 2) 6
1.5 Ceva's theorem and Menelaus' theorem (part 2) 7
1.6 Special tetrahedra 8
1.7 Angle chasing and centers of triangles (part 3) 9
1.8 Radical axis and radical center 10
1.9 Angle chasing and centers of triangles (part 4) 11
1.10 Tiles and coloring (part 1) 12
1.11 Angle chasing and centers of triangles (part 5) 13
\downarrow 1.12 Introduction to Simson line and Miquel's theorem 14
1.13 Reflection in geometric computations 15
1.14 Angle chasing and centers of triangles (part 6) 16
1.15 Vector, conic curves, and analytic geometry (part 1) 17
2 Math Olympiads 2, Geometry Supplement 2 19
2.1 Vector, conic curves, and analytic geometry (part 2) 20
2.2 Practices with geometry computations (part 1) 21
2.3 Practices with geometry computations (part 2) 22
2.4 Practices with geometry computations (part 3) 23
3 Math Olympiads 2, Geometry Supplement 3 25
3.1 Tesselations and tiles (part 1) 25
3.2 Tesselations and tiles (part 2) 26
3.3 Tesselations and tiles (part 3) 27
3.4 Challenges in Origami (part 1) 28
3.5 Challenges in Origami (part 2) 29

1.4 Angle chasing and centers of triangles (part 2)

1. Let $A B C$ be an acute triangle. Point P lies on segment $A C$ and point A lies on segment $B Q$ such that triangle $B P Q$ is similar to triangle $A B C$. Prove that the circumcenter of triangle $A B C$ is the orthocenter of triangle $B P Q$.
2. The incircle of triangle $A B C$ touches sides $A B$ and $A C$ at Q and P, respectively. The bisectors of angles B and C meet line $P Q$ at X and Y, respectively. Prove that $B C X Y$ is cyclic and determine its circumcenter.
3. Let $A B C D$ be a convex quadrilateral with $\angle A B C=\angle C D A$. The circumcircle of triangle $A C D$ meets line segment $B C$ at X and the circumcircle of triangle $A B C$ meets line segment $C D$ at Y. Prove that $B Y=D X$.
4. In triangle $A B C, H$ is the orthocenter and O is the circumcenter. Denote by H_{a} the midpoint of $A H$ and by M_{a} the midpoint of $B C$.
(a) Prove that $H H_{a} O M_{a}$ is a parallelogram.
(b) Similarly, we define points H_{b}, H_{c}, M_{b}, and M_{c}. Show that $H_{a} M_{a}, H_{b} M_{b}, H_{c} M_{c}$ are concurrent.
5. Points D and E lie on side $A C$ of triangle $A B C$. Given that $\angle C=40^{\circ}, \angle A B D=10^{\circ}$, $\angle A B E=40^{\circ}$, and $\angle A B C=50^{\circ}$. Show that $C E=2 A D$ by
(a) establishing the fact that the circumcircle of triangle $A B D$ passes through the midpoint of side $B C$;
(b) applying a proper reflection.

1.12 Introduction to Simson line and Miquel's theorem

1. Let $A X Y Z B$ be a convex pentagon inscribed in a semicircle of diameter $A B$. Denote by P, Q, R, S the feet of the perpendiculars from Y onto lines $A X, B X, A Z, B Z$, respectively.
(a) Prove that the acute angle formed by lines $P Q$ and $R S$ is half the size of $\angle X O Z$, where O is the midpoint of segment $A B$.
(b) Note that it seems that $P Q, R S, A B$ are concurrent. Is it true? Maybe the next problem can tell us why.
(Simson line) Consider point P on the circumcircle of triangle $A B C$. Let points D, E, and F be the feet of the of the perpendiculars from P to lines $A B, A C$, and $B C$, respectively. Prove that D, E, and F are collinear. The line through these points is called the Simson line of point P with respect to triangle $A B C$.
State the converse statement and determine if the converse is true.
2. (Miquel's theorem) Let $A B C$ be a triangle. Points X, Y, and Z lie on sides $B C, C A$, and $A B$, respectively. The circumcircles of triangles $A Y Z, B Z X$, and $C X Y$ meet at a common point - the Miquel point. (Indeed, X, Y, Z can lie on lines $A B, B C, C A$.)
State the converse statement and determine if the converse is true.
3. (Continuation) Prove that the circumcenters of triangles $A Y Z, B Z X$, and $C X Y$ form a triangle similar to triangle $A B C$.
[Miquel's theorem] Consider quadrilateral $A B C D$ and suppose lines $A B$ and $C D$ intersect in point E and lines $B C$ and $A D$ intersect in point F. Prove that the circumcircles of triangles $A D E, B C E, C D F$, and $A B F$ (Miquel circles) intersect at one point, called (Miquel point). What is the necessary and sufficient condition for the Miquel point to lie on the diagonal $E F$? The existence of the Miquel point can be established in at least two different approaches, one by angle chasing and one by Simson line. Please try both methods.
